Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.

Identifieur interne : 004614 ( Main/Exploration ); précédent : 004613; suivant : 004615

Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.

Auteurs : Dae-Kyun Ro [Canada] ; Jürgen Ehlting ; Carl J. Douglas

Source :

RBID : pubmed:12481067

Descripteurs français

English descriptors

Abstract

NADPH:cytochrome P450 reductase (CPR) provides reducing equivalents to diverse cytochrome P450 monooxygenases. We isolated cDNAs for three CPR genes (CPR1, CPR2, and CPR3) from hybrid poplar (Populus trichocarpa x Populus deltoides). Deduced CPR2 and CPR3 amino acid sequences were 91% identical, but encoded isoforms divergent from CPR1 (72% identity). CPR1 and CPR2 were co-expressed together with the P450 enzyme cinnamate-4-hydroxylase (C4H) in yeast (Saccharomyces cerevisiae). Microsomes isolated from strains expressing CPR1/C4H or CPR2/C4H enhanced C4H activities approximately 10-fold relative to the C4H-only control strain, and catalyzed NADPH-dependent cytochrome c reduction. The divergent CPR isoforms (CPR1 and CPR2/3) contained entirely different N-terminal sequences, which are conserved in other plant CPRs and are diagnostic for two distinct classes of CPRs within the angiosperms. C-terminal green fluorescent protein fusions to CPR1 and CPR2 were constructed and expressed in both yeast and Arabidopsis. The fusion proteins expressed in yeast retained the ability to support C4H activity and, thus, were catalytically active. Both CPR::green fluorescent protein fusion proteins were strictly localized to the endoplasmic reticulum in transgenic Arabidopsis. The lack of localization of either isoform to chloroplasts, where P450s are known to be present, suggests that an alternative P450 reduction system may be operative in this organelle. Transcripts for the three poplar CPR genes were present ubiquitously in all tissues examined, but CPR2 showed highest expression in young leaf tissue.

DOI: 10.1104/pp.008011
PubMed: 12481067
PubMed Central: PMC166695


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.</title>
<author>
<name sortKey="Ro, Dae Kyun" sort="Ro, Dae Kyun" uniqKey="Ro D" first="Dae-Kyun" last="Ro">Dae-Kyun Ro</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
</author>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12481067</idno>
<idno type="pmid">12481067</idno>
<idno type="doi">10.1104/pp.008011</idno>
<idno type="pmc">PMC166695</idno>
<idno type="wicri:Area/Main/Corpus">004571</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004571</idno>
<idno type="wicri:Area/Main/Curation">004571</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004571</idno>
<idno type="wicri:Area/Main/Exploration">004571</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.</title>
<author>
<name sortKey="Ro, Dae Kyun" sort="Ro, Dae Kyun" uniqKey="Ro D" first="Dae-Kyun" last="Ro">Dae-Kyun Ro</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
</author>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Endoplasmic Reticulum (genetics)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Green Fluorescent Proteins (MeSH)</term>
<term>Hybrid Vigor (genetics)</term>
<term>Isoenzymes (genetics)</term>
<term>Isoenzymes (metabolism)</term>
<term>Luminescent Proteins (genetics)</term>
<term>Luminescent Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>NADPH-Ferrihemoprotein Reductase (genetics)</term>
<term>NADPH-Ferrihemoprotein Reductase (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Isoenzymes (génétique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>NADPH-ferrihemoprotéine reductase (génétique)</term>
<term>NADPH-ferrihemoprotéine reductase (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines luminescentes (génétique)</term>
<term>Protéines luminescentes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines à fluorescence verte (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réticulum endoplasmique (génétique)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Vigueur hybride (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Isoenzymes</term>
<term>Luminescent Proteins</term>
<term>NADPH-Ferrihemoprotein Reductase</term>
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Isoenzymes</term>
<term>Luminescent Proteins</term>
<term>NADPH-Ferrihemoprotein Reductase</term>
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Green Fluorescent Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Endoplasmic Reticulum</term>
<term>Hybrid Vigor</term>
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Isoenzymes</term>
<term>NADPH-ferrihemoprotéine reductase</term>
<term>Populus</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines luminescentes</term>
<term>Protéines végétales</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomyces cerevisiae</term>
<term>Vigueur hybride</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Endoplasmic Reticulum</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Isoenzymes</term>
<term>NADPH-ferrihemoprotéine reductase</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines luminescentes</term>
<term>Protéines végétales</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
<term>Protéines à fluorescence verte</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NADPH:cytochrome P450 reductase (CPR) provides reducing equivalents to diverse cytochrome P450 monooxygenases. We isolated cDNAs for three CPR genes (CPR1, CPR2, and CPR3) from hybrid poplar (Populus trichocarpa x Populus deltoides). Deduced CPR2 and CPR3 amino acid sequences were 91% identical, but encoded isoforms divergent from CPR1 (72% identity). CPR1 and CPR2 were co-expressed together with the P450 enzyme cinnamate-4-hydroxylase (C4H) in yeast (Saccharomyces cerevisiae). Microsomes isolated from strains expressing CPR1/C4H or CPR2/C4H enhanced C4H activities approximately 10-fold relative to the C4H-only control strain, and catalyzed NADPH-dependent cytochrome c reduction. The divergent CPR isoforms (CPR1 and CPR2/3) contained entirely different N-terminal sequences, which are conserved in other plant CPRs and are diagnostic for two distinct classes of CPRs within the angiosperms. C-terminal green fluorescent protein fusions to CPR1 and CPR2 were constructed and expressed in both yeast and Arabidopsis. The fusion proteins expressed in yeast retained the ability to support C4H activity and, thus, were catalytically active. Both CPR::green fluorescent protein fusion proteins were strictly localized to the endoplasmic reticulum in transgenic Arabidopsis. The lack of localization of either isoform to chloroplasts, where P450s are known to be present, suggests that an alternative P450 reduction system may be operative in this organelle. Transcripts for the three poplar CPR genes were present ubiquitously in all tissues examined, but CPR2 showed highest expression in young leaf tissue.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12481067</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>05</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>130</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>1837-51</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>NADPH:cytochrome P450 reductase (CPR) provides reducing equivalents to diverse cytochrome P450 monooxygenases. We isolated cDNAs for three CPR genes (CPR1, CPR2, and CPR3) from hybrid poplar (Populus trichocarpa x Populus deltoides). Deduced CPR2 and CPR3 amino acid sequences were 91% identical, but encoded isoforms divergent from CPR1 (72% identity). CPR1 and CPR2 were co-expressed together with the P450 enzyme cinnamate-4-hydroxylase (C4H) in yeast (Saccharomyces cerevisiae). Microsomes isolated from strains expressing CPR1/C4H or CPR2/C4H enhanced C4H activities approximately 10-fold relative to the C4H-only control strain, and catalyzed NADPH-dependent cytochrome c reduction. The divergent CPR isoforms (CPR1 and CPR2/3) contained entirely different N-terminal sequences, which are conserved in other plant CPRs and are diagnostic for two distinct classes of CPRs within the angiosperms. C-terminal green fluorescent protein fusions to CPR1 and CPR2 were constructed and expressed in both yeast and Arabidopsis. The fusion proteins expressed in yeast retained the ability to support C4H activity and, thus, were catalytically active. Both CPR::green fluorescent protein fusion proteins were strictly localized to the endoplasmic reticulum in transgenic Arabidopsis. The lack of localization of either isoform to chloroplasts, where P450s are known to be present, suggests that an alternative P450 reduction system may be operative in this organelle. Transcripts for the three poplar CPR genes were present ubiquitously in all tissues examined, but CPR2 showed highest expression in young leaf tissue.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ro</LastName>
<ForeName>Dae-Kyun</ForeName>
<Initials>DK</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ehlting</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Douglas</LastName>
<ForeName>Carl J</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF302496</AccessionNumber>
<AccessionNumber>AF302497</AccessionNumber>
<AccessionNumber>AF302498</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008164">Luminescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.2.4</RegistryNumber>
<NameOfSubstance UI="D009251">NADPH-Ferrihemoprotein Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006823" MajorTopicYN="N">Hybrid Vigor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008164" MajorTopicYN="N">Luminescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009251" MajorTopicYN="N">NADPH-Ferrihemoprotein Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12481067</ArticleId>
<ArticleId IdType="doi">10.1104/pp.008011</ArticleId>
<ArticleId IdType="pmc">PMC166695</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Mar;39(4):657-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10681464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Mar;5(3):116-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10707077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Jul 1;379(1):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):306-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Apr;4(2):162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11228441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2001 Apr;382(4):645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11405227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Jun;6(6):245-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11419413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 28;276(39):36566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11429408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Aug;42(8):873-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11522915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11543592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):239-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Sep;42(9):894-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Oct;28(2):201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Apr;30(1):33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jun;105(2):473-482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Jul;239:2370-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14209971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:111-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Mar 25;20(6):1425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1561104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Feb;98(2):728-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 Jan 22;1056(2):93-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1671559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 May 31;177(1):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1904216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jul 10;253(13):4653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">207706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1989 Apr 1;180(3):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2653818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Oct 25;261(30):14232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3021733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jan 10;260(1):515-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3917435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1973 Jun 5;12(12):2297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4145653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 Jul 10;244(13):3714-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4389465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Jan 10;256(1):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6778861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Oct 10;256(19):10066-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6792195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Jul 4;34(26):8380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7599128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 1994 Mar;35(3):361-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8014573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Jun 15;222(3):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8026495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):71-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jul;4(1):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2890-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8464904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Mar 1;327(1):11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8615680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;272:51-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8791762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metabol Drug Interact. 1995;12(3-4):189-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8820852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Mar;113(3):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9085571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 1;272(31):19176-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9235908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Dec;35(6):993-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9426620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1997 Dec 15;348(2):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9434750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jan;116(1):357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb;116(2):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 27;273(13):7260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9516419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):353-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Ro, Dae Kyun" sort="Ro, Dae Kyun" uniqKey="Ro D" first="Dae-Kyun" last="Ro">Dae-Kyun Ro</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004614 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004614 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12481067
   |texte=   Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12481067" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020